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Characteristic polynomials of large graphs. 
On alternate form of characteristic polynomial [1] 
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A recursion exists between the absolute magnitudes of the coefficients of the 
characteristic polynomials of certain families of cyclic and acyclic graphs 
which makes their computation quite easy for very large graphs using a 
pencil-and-a-paper approach. Structural requirements are given for such 
families of graphs which are of interest to the problem of recognition defined 
in [1]. 
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I. Introduction 

Recently Randi6 [1] wrote an interesting paper on an alternate representation of 
characteristic polynomials, P(G, x)'s of certain families of graphs in terms of Ln, 
the characteristic polynomial of a paths on n vertices. 

The purpose of this communication is to cite an observation on a recurrence 
relation occurring between the absolute magnitudes of the coefficients of P(G, x)'s 
of certain families of cyclic and acyclic graphs. Identifying such a relation allows 
construction of P(G, x)'s of very large graphs feasibly without resort to a 
computer. 

2. Notation 

We shall resolve characteristic polynomial into acyclic and cycle parts, thus 

P(G, x ) =  Pa~(G, x)+ P~Y(G, x) (la) 
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= a m x  + amx (lb) 
m = 0  m = O  m = 0  

where n is number of vertices in G. The first terms in Eqs. (la) and (lb) correspond 
to the acyclic polynomial [2] while the second terms will be called here cycle 
polynomials [3]. They arise from Sachs graphs [4] containing at least one cycle, 
thus 

a ~ =  Y~ (--1)c(s)2 r(s) (2a) 
scs~; 

a 7  = • (-1) ~s) (2b) 
s ~ S ~n" 

S~ is a Sachs graph on m vertices which contains at least one cycle while S~, c is 
an acyclic Sachs graph, c(s) is, as usual, number of components and r(s) number 
of cycles in the relevant Sachs graph. 

3. Results 

The families of graphs presented in Randi6's paper [1] obey one or more of the 
following types of recursions: (G, is a graph on n vertices) 

laTC(G.)l +la,a~-z(G,+l)l = lai%2(G~ i =  0, 2, 4 , . . . .  (3a) 
c y  c y  la~Y( G,)] +la,+2( G,+,)[ -- la,+z( a,+z)l (3b) 

i = 0, 2, 4 , . . .  and i = 3, 5, 7 , . . .  (a~ is always equal to zero) 

where in general la~(G,)l is the absolute magnitude of the j th  coefficient of G,. 
For acyclic structures (3b) does not exist and a~C(Gm) = ai(Gm) i.e. characteristic 
and acyclic polynomials coincide and the superscripts may be dropped, thus: 

la,(Q)l +la,+2(Q+,)] = la,+2(G.+~)[ i = 0, 2, 4 , . . .  (3c) 

Eq. (3c) also holds for families of cyclic structures containing no odd cycles (see 
later). 

We shall treat three types of families presented in Ref. [1], viz., 

" K  

(J) (,) (Irt) 

where G 1 and G2 may or may not be identical and may be cyclic or acyclic 
graphs. E.g. the first set in Table 2, [1], corresponds to type (I) with Gt = "2-" 
and k = 0, l, 2, 3, 4, respectively. Similarly the fifth set of graphs of Table 2, (1), 
corresponds to type (II) with G~ = G 2 - -  ~" with k = 0, l, 2, 3 respectively. The 
two sets in Table 7, (1), correspond to type (I) where G1 = C3 and C4 respectively 
and k = 1, 2, 3, 4, 5. The sets of graphs shown in Table 8, [1], belong to (III) with 
k =  1, 2, 3, 4, 5. We state the following observations: (1) when G~ and G2 are 
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both acyclic graphs Eq. (3c) applies. E.g. P(Tl6,x) might easily be calculated 

Tlg 

From P(T, x)'s of the first two trees in the last set of Table 2, [1] and eight 
applications of recurrence (3c), thus 

P(T16, x)=  x 16- 15x14+89x12-266x~~ 123x 4 -  12x z 

Similarly to compute P(T~s, x), we have to know only 

O 
m--10 "~..~ 

]-18 

P(T, x)'s of the first two members: the absolute magnitudes of the a's are listed 
below: 

m 

I I .  8 15 

3 1 10 30 24 

10 1 17 11L 381 658 546 172 9 

(2) For types (I) and (II) in which Gl and/or  G2 are even-membered cycles, 
recursions (3a) and (3b), with i being even integers, apply: and whence, also, 
recurrence (3c). The second set of Table 7, [1], illustrates this case, the absolute 
magnitudes of their cyclic and acyclic coefficients are listed below: 

i\ i\~ i \2 \ : \ i \o  
1 1 

l\i\ii\ i\i 
2 8 6 1 9 26 27 8 
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Knowing  the signs (which is trivial) we can compute  the a~.~. Thus, e.g. P(G14, x) 
might most  easily be computed ;  it is: 

Glz 

P(  G~4, x) = x 14 - -  14X ~ 2 + 74X 10 - -  184X 8 + 271 X 6 -- 106X 6 + 14X z. 

The method  is not restricted to cyclic graphs with pending bonds  [5]. Relation 
(3c) applies to a homologous  series o f  graphs containing even-membered rings o f  
constant size throughout the series. As an illustration, we consider  the series 

GIr,s) 
k--O, l i  2 . . . . .  

The cyclic coefffzients are (for r=2, s=4) 

k a~Y a~Y a~ y a~ a~ 

0 -2 10 -10 4 0 

I I I I 
2 -2 14 -26 16 -L 

The acycl[c coeff izients are: 

k a~ c a~ c a] c a~ c a~ c a~  a~  

i ii\ii ~ 00 1 \0~ 
I I I I I I 

1 -13 62 -133 127 -L6 L 

And since ai = a7 c + a cy, i even, we have an easy penci l -and-a-paper  method for 
construct ing P(G,  x) 's  for very large cyclic graphs (of  course the series might be 
expanded  as we please). 

(3) For  types (I), (II)  in which either (or both)  rings are odd-membered ,  contribu- 
tions f rom cyclic Sachs graphs on odd  vertices do not vanish, and hence their 
P(G,  x) 's  contain contributions from odd  coefficients. In such cases recurrence 
relations 3a and 3b (with i both odd and even) hold. For r = s = 1, we obtain the 



Characteristic polynomials of large graphs 195 

following quantities: 

Cyclic coefficients 
Odd subscripts 

k a~ y d~ y fl~ y a~ y 

t -/. 1 6 _ _ - L  0 \ \ 
2 - / . ~ 2 0  -16 0 

I I 
3 -4 2/* ~32 4 

Acycffc coeffic/'ents 

i 1 ~ 8  17 -6 0 

1 -9 2/. ~ ' - 1 7 ~  1 
I I I I 

3 1 -10 32 -3/. 7 

Even subscripts 

k a~ y a~ y 

1 /. 0 

2 - 

I 
3 /. -8 

Thus the coefficients of the characteristic polynomials are: 

k aO U2 a3 -(:14 a5 a6 a7 a8 Q9 

1 -8~ L ~ _  1 6 ~ ~ - 4 ~ 0  

1 -9 " "  -~Z "~ ~ 2 4 ~  20" ~ - ~  6 " ' ' " -  3 ~  0 
i I i I ,~ I 

1 -10 -L 32 2/. -30 -32 -1 4 

We observe that recurrence relation holds only for odd subscripted coefficients of 
their P(G, x)'s i.e. Eq. (3c) with i = 3, 5, 7 , . . . .  This presents no difficulty, however, 
since both Eqs (3a) and (3b) hold for the " resolved parts" of P(G, x). To illustrate 
this subtle point we list a 6 and a8 for the above family resolved as follows: 

k a~ y ~ a~ c a~ y ~ a~ c 

2 - 

I I 
3 -8 +7 

u 6 (3 8 

-1 

The above picture is symptomatic for graphs of type G(r, s) where either r and /or  
s being an odd integer. We might easily expect Eq. (3c) with i = 3, 5, 7 to hold 
for the upper family of  graphs shown in Table 7, [1], and (3c), i = 0, 2, 4 , . . .  to 
hold for the second set of graphs. 

(4) For graphs of type III, examples of  which are given by the three families of 
graphs shown in Table 8, it might be shown that only recursion (3a) holds. 
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Conjecture 

Let G~ be a graph on n vertices and {Gn, Gn+t, Gn+a, . . . ,  Goo} be a homologous 
family of graphs. Let g be a common subgraph in the set (where g may be an 
empty graph). The family {G'~, G'~+I, . . . ,  G~} results when g is pruned out of 

I - -  t ! all members. Now we form all graphs {G,~} where Go.- G~- G} for all i>j, with 
i_< n. If, then all G,~'s are paths, one or more of recursions (3a-3c) hold depending 
on cyclic and acyclic structures present (c.f. cases 1--4 above). E.g. consider the 
fifth set in Table 2, [1], viz. 

;.a >y >4.... 
where g = ) , thus the primed family is 

we observe that all Gb's are paths, e.g. 

A- (--,,,.y- }-- Lo, 
As a further illustration we consider the following set of trees (which are trans- 
formable into benzenoid graphs whose sextet polynomials are identical to the 
P(T, x)'s, [63) 

k_l ~Z. \ l! 
T4 Ts T 6 T7 

Let g = O (an empty subgraph), then we have T5-  T4 = T6-T5 = 7"7- T6 = E l ;  

T6-T4 = L2, but TT-T5 = L~.L1, a disconnected graph and thus we should not 
expect T7 to obey (3a), indeed it does not: the P(T, x)'s are: 

f Tz, x z' -3x 2 +1 
T5 xS'~"'~_ 4 x3X~+ 2 x 

To ; : " - ~ x % ~ - 1  
~ x' ~x~ ~tx~ ~ - - 2x  

Conclusion 

All graphs might in principle be regressed down to very small graphs if we 
recognize a family for every graph. By repeated use of recursions type 3 one 
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Fig. 1. Some representative graphs studied in this work reproduced from Ref. [1]. Sets 1, 2 are from 
Table 2, sets 3, 4 from Table 7 while set 5 is taken from Table 8. Sets 1, 3, 4 represent type I, set 2 
represents type 1I and set 5 represents type III of graphs studied here 

obtains polynomials for potentially very large graphs. The resolution of P(G, x)'s 
into cyclic and acyclic parts clarifies possible recursions existing between poly- 
nomial coefficients. 
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